熱帯人工林の伐期が林地養分循環に及ぼす影響

森 徳典\(^1\)・中山祐介\(^1\)・脇 幸介\(^2\)・
Tosporn Vacharangkura\(^3\)・Sirirat Janmahasatien\(^3\)

人工林造成は木材生産や荒廃地の緑化、環境保護林の造成などに欠かせない手段である。しかし、一方において、人工林は、持続的森林管理の柱である生物多様性の保全、水土保全、地球環境への貢献、健全な森林の維持などの面で、時としてマイナスの効果をもたらす面もある。その中の一つとして、産業植林に代表される短伐期施業において、収穫の繰り返しが地力低下をもたらすことが懸念されている。この報告は、2000年から3年間、林野庁補助事業で起こった「開発途上の人工林の環境影響調査」において、中心的に取り上げた林地の無機養分循環に及ぼす木材収穫の影響についての調査の一部として、国際緑化推進センターがタイ国王室森林局森林研究所造林部との共同で調査をおこなった結果である。

1. 調査地及び調査方法

調査地は外来早生樹種の短伐期一斉造林の典型である産業植林地と熱帯草原に植林された長伐期郷土樹種及び外来早生樹種による環境植林地を対象とし、主として樹種の違いと伐期の違いが林地の無機養分循環に与える影響について調査を行った。

1）タイ・プライウッド社有林

調査地はバンコクの東約70kmに位置し、Thai Plywood社が経営している繊維板用原料供給林である。面積は約3,200ha、海抜80mの平坦地で、Oxic paleustults土壌である。気候条件は年平均気温が27.0℃、年平均雨量が1,250mm、5月から10月の雨季と11月から4月の乾季がある熱帯モンスーン気候

\(^1\)国際緑化推進センター, \(^2\)元国際緑化推進センター, \(^3\)タイ王室林野局造林研究部

熱帯林業 No. 59 (2004)
表 1 調査林分の成長概要

<table>
<thead>
<tr>
<th>区分</th>
<th>樹種</th>
<th>林齢（年）</th>
<th>密度（本/ha）</th>
<th>DBH（cm）</th>
<th>樹高（m）</th>
<th>材積（m³/ha）</th>
<th>年平均成長（m³/ha・年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>産業</td>
<td>Ec</td>
<td>4</td>
<td>1231</td>
<td>8.9</td>
<td>13.3</td>
<td>86</td>
<td>21.5</td>
</tr>
<tr>
<td>植林</td>
<td>Ec</td>
<td>6</td>
<td>1570</td>
<td>10.6</td>
<td>16.7</td>
<td>108</td>
<td>18.0</td>
</tr>
<tr>
<td>環境</td>
<td>郷土</td>
<td>Xx</td>
<td>15</td>
<td>1553</td>
<td>11.2</td>
<td>13.3</td>
<td>117</td>
</tr>
<tr>
<td>植林</td>
<td>樹種</td>
<td>Dc</td>
<td>16</td>
<td>2265</td>
<td>9.5</td>
<td>11.0</td>
<td>102</td>
</tr>
<tr>
<td>来林</td>
<td>Aa</td>
<td>16</td>
<td>1287</td>
<td>15.5</td>
<td>19.3</td>
<td>270</td>
<td>16.9</td>
</tr>
<tr>
<td>樹種</td>
<td>Am</td>
<td>16</td>
<td>873</td>
<td>20.3</td>
<td>20.1</td>
<td>299</td>
<td>18.7</td>
</tr>
</tbody>
</table>

注）樹種略記号は本文参照

である。この林地内の一代目植物林地で収穫直前の 6 年生と 2 代目植物林地の 4 年生の E. camaldulensis（以下 Ec と略す）を調べた。前者は実生苗木、後者は挿し木苗で、ともに植栽間隔は 2 m × 3 m、6 年伐期で経営されている。調べた林分の成長状態は表 1 のとおりである。

2）サケラート試験林

サケラート試験林は、焼き畑耕作跡地の Imperata cylindrica, Neyraudia reynaudiana, Sacchalam spontaneum 等で被われた草原に、1981 年から 1990 年まで JICA の援助により、各種の人工林が造成された場所である。焼き畑前の乾性常緑林に被われていた。試験林はコラート高原の東南端に位置し、バンコックから東北に直線距離で約 200 km 離れている。土壌はおおむね Ferric Acrisol に属する。中腹平坦地で、コラート高原の中では乾燥及び土壌の硬さ度は中庸である。年平均気温 26.5℃、最近 3 年間の年平均降雨量は約 1,200 mm である。熱帯モンスーン気候に属し、雨季・乾季は産業植物林地と同じである。

調査した林分は在来樹種 2 種、Dalbergia cochinchinensis と Xyilia xylocarpa（以下 Dc, Xx）、外来旱生樹 2 種、Acacia auriculiformis と A. mangium（以下 Aa, Am）である。各林分の植栽年は 1986 で、植栽間隔は Xx が 2 m × 2 m の外、2 m × 3 m である。乾季の後半には、在来樹種は落葉する。各樹種の成長状態を表 1 に示した。

3）調査方法

社有林では、調査林分の胸高直径分布幅から大中小 5 本の標本木を伐倒し、葉、枝（大と小）、幹（材と樹皮）、根（大・中・小）ごとに、バイオマス乾重測定用試料と無機養分（N, P, K, Ca, Mg）分析試料を採取した。サケラート試験林では、平均木 3 本を伐倒し、同様に試料採取した。林床植生量は 4 ケ

熱 帯 林 業 No. 59 (2004)
表 2 植林木、林床植生、表層土壌（0~30 cm）中の養分量

<table>
<thead>
<tr>
<th>林種</th>
<th>区分</th>
<th>全 N</th>
<th>置換性塩基 (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(kg/ha)</td>
<td>P</td>
</tr>
<tr>
<td>6年生</td>
<td>植林木</td>
<td>377</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>全植生</td>
<td>616</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>表層土壌</td>
<td>8791</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>生態系</td>
<td>9407</td>
<td>22.9</td>
</tr>
</tbody>
</table>

生態系：全植生（植林木+林床植生地上部）+ 表層土壌（0~30 cm）

所（1m²）の地上部植物の平均である。無機養分のうち N はセルダール法、
その他の原子吸光法で測定した。社有林の面積当たりのバイオマス量と無機養
分量は D4H との相関性を基に推定した。一方、サケラート試験林のそれら
は試料木胸高直径と林分胸高断面積を基に推定した。各林分の土壤調査結果
は、紙面の関係で省略する（森ほか、2003）。

2. 樹木の無機養分

産業植林地：E. camaldulensis の 6 年生（以下 Ec-6）及び 4 年生（Ec-4）の
植林木（根を含む）および全植生（植林木+林床植物地上部）に存在する無機
養分量を調べた（表 2、Ec-4 省略）。また、土壤表層（0~30 cm）に含まれる無
機養分量（N は全窒素量、その他は置換性養分量）も合わせて表 2 に示した。

全植生中の養分量に対する表層土壌中の養分量の比は、4 年生で N : P : K : Ca
: Mg が 10.8 : 2.8 : 0.5 : 0.5 : 3.4、6 年生で 14.2 : 0.7 : 0.2 : 0.5 : 2.1 であった。K
と Ca 及び 6 年生の P は、表層土壌中より植物中に多く存在していた。した
がって、熱帯土壌中にブールされている置換性塩基類の量は非常に少ないこと
が推測できる。逆に言うと植生中に貯えられている養分量が多いといえる。

環境植林地：サケラートの 15 年生紡土種と外来樹種の林地表層土壌と全
植生に含まれる無機養分を表 3 に示した。Dc 林地土壌で Ca が他 3 林地より
10 倍近く多かった以外は、樹種間で無機養分に大差なく、土壤表層中の置換性
P, K, Ca は植生中のそれらの 1/3 から 1/2 程度しか存在しなく、産業植林地
と同様の結果を示した。ベトナムにおける Acacia auriculiformis 林も同様で
あった（山田，2003）。さらに、別に調査したサケラートの植林地に隣接する I.
cylindorica 草原土壌は塩基飽和度が調査植林地より 2, 3 倍高く、植林地の土
壌はより多くの塩基類（K, Ca, Mg）が地上部に吸い上げられて、塩基飽和度
が低い性質を示した。なお、草原土壤の N と P は非常に低かった。これは毎年のように繰り返される野火の影響であると思われる。

熱帯土壤、特に風化の進んだ Acrisol などの土壤では、土壤中にプールされる無機分量が非常に少なく、落葉落枝などの素早い分解とそれの植物体による吸収、すなわち、植物–土壤間の早い養分循環によって、熱帯林特有の多量の植物量が支えられていると言われている（Ohta ほか，2000）。ここで得られた結果はその反映であろう。

3. 収穫材木中の無機養分量

15 年生の植林木の樹幹乾重は、その全乾重の 60〜70％を占めていた。一方、樹幹中の養分量は、P を除いて、植林木全体のそれの 50〜60％であった。P のみは樹幹中に 30 数％しか存在しなかった。この傾向は在来種、外来種で大きな違いは認められない。したがって、木材収穫時に枝葉を林地に残すことで、P 以外の養分は半分近く、P は 2/3 近くが林地に残ることになる。

産業植林地においても、上記同様の傾向がみられたが、樹齢の若い 4 年生の E. camaldulensis では、樹幹中の P の量が、6 年生や 16 年生の早生樹に比較して10％程度高い含有率であった。このように樹齢が若いと形成層など生組織の比率が高いために、養分含有量が大きくなるので、収穫材木中に含まれる比率が高くなる。植林木各部位に存在する各養分量については、既報告書（JOPP and JIFPRO, 2003）を参照されたい。
図 1 植林樹種ごとの各収穫法（A、B、C）別の養分持ち出し量（記号は本文参照）

4. 林地養分循環への木材収穫の影響

1）収穫木材中に含まれる養分量
収穫方法別に持ち出し養分量を推定してみた。収穫方法は A）直径 5 cm 以上の剥皮丸太の収穫、B）直径 5 cm 以上の樹皮付き丸太の収穫（慣習的方法）、C）直径 2 cm 以上の樹幹と太枝の収穫（Thai Plywood 社法）の 3 つのケースについて推定した。

図 1 は環境植林地での例である。収穫バイオマスが増える（A→B→C）につれて、一般に林地から持ち出される養分量は増加するが、剥皮丸太の収穫は、Ca の林地残留に大きく貢献することがわかる。この傾向は特に Acacia や Eucalyptus で顕著であった。産業植林地においても結果はまったく同様であった。

2）養分持ち出し量と土壌表層に含まれる養分量の比較
ここで、慣習的方法（B 法）によって持ち出される養分量と 0～30 cm の表層土壌に含まれる養分量（N 以外は置換性）比較してみた（表 4）。これによると、両試験地とも P, Ca で、一回の伐採で持ち出される量以下しか表層土壌中に含
まれていないことがわかる。このように Acrisol などの熱帯土壌では、わずかな塩基養分 pool しかないので、樹木中に多く含まれる養分が収穫されると、土壌肥沃度への影響は温帯などより大きいと予想される。

3）伐期の影響

ついて、環境植林地について、それぞれの樹種の収穫予想表から推定した各伐期（図 2 参照）の乾材積と調査時（15 年生）の幹材中の養分含有量から計算したそれぞれの伐期における養分持ち出し量を推定した。1 回の伐採で持ち出される養分量は、持ち出す乾材積の多い長伐期ほど多くなる。しかし一定年月、ここでは 30 年間を想定すると、図 2 から明らかなように、同じ期間内では、伐期長が長く、伐採回数が少ないほど、持ち出し養分量は減少する傾向を示した。この傾向は樹種、養分の種類を問わず、まったく同様であった。伐期長が 30 年より長くなれば、さらにこの削減効果は大きくなるはずである。産業植林地でも、15 年間を想定すると、6 年生 2.5 回より 15 年生 1 回の方が少なかった。

4）雨水による養分供給量

Acrisol のような風化の進んだ古い土壌では、鉱物の風化によるミネラル分の土壌への供給より、雨水による養分供給の重要性が高いと思われる。そこで雨水によって供給される養分量と木材収穫による持ち出し養分量の関係を比較してみた。雨水中の養分は、タイ国中西部の Meaklong 理水試験地における最近 3 年間のデータと Jordan （1987）によって報告されている熱帯季節林地帯の平均的雨水養分量を用いた（表 5）。

表 6 には産業植林地の Ec-6 の例を載せた。Maeklong の data を用いた場合には、Ca 以外の養分は伐期（6 年間）までに雨水により供給される量の方が収穫林業 No. 59 (2004)
図 2 各伐期齢で 30 年間に慣習的伐採法で持ち出される養分量の比較
Am で 6×5, 15×2, 30×1 はそれぞれ A. Mangium を 6 年伐期で
5 回, 15 年伐期で 2 回, 30 年伐期で 1 回収穫した場合の値。その他の
樹種も同じ。

穫される量より多くなった。Maeklong の雨水は Ca, K, N などの養分量が
常に高濃度 (Jordan の最高値, あるいはその倍以上) であったので, 仮に
Jordan の値を用いてみると, 逆に P 以外のすべての養分でマイナスになった。
表 5 雨水による養分供給量（kg/ha・yr）

<table>
<thead>
<tr>
<th>場所</th>
<th>調査年</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイ</td>
<td>1999-2001</td>
<td>40.4</td>
<td>3.2</td>
<td>55.2</td>
<td>25.3</td>
<td>9</td>
</tr>
<tr>
<td>季節林</td>
<td>平均</td>
<td>15</td>
<td>1.3</td>
<td>12</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>地域</td>
<td>範囲</td>
<td>11-19</td>
<td>0.6-20</td>
<td>6-18</td>
<td>4-25</td>
<td>1.5-7.5</td>
</tr>
</tbody>
</table>

表 6 雨水による養分供給量と各種伐採法による養分持ち出し量の差

<table>
<thead>
<tr>
<th>タイ西部の雨水の場合</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ec-6 削皮法</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B 慣習法</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 会社法</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

季節林平均雨水の場合

Ec-6 削皮法	-	+	-	+	-
B 慣習法	-	+	-	-	-
C 会社法	-	+	-	-	-

表 7 雨水供給養分と持ち出し養分の差

<table>
<thead>
<tr>
<th>樹種</th>
<th>伐期年</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dc</td>
<td>15</td>
<td>300</td>
<td>44.2</td>
<td>658</td>
<td>253</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>782</td>
<td>90.6</td>
<td>1417</td>
<td>580</td>
<td>257</td>
</tr>
<tr>
<td>Xy</td>
<td>15</td>
<td>175</td>
<td>40.8</td>
<td>670</td>
<td>197</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>593</td>
<td>85.6</td>
<td>1430</td>
<td>496</td>
<td>219</td>
</tr>
<tr>
<td>Am</td>
<td>6</td>
<td>-183</td>
<td>15.5</td>
<td>281</td>
<td>8</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-298</td>
<td>40.1</td>
<td>722</td>
<td>73</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-8</td>
<td>85.4</td>
<td>1513</td>
<td>344</td>
<td>241</td>
</tr>
<tr>
<td>Aa</td>
<td>6</td>
<td>-231</td>
<td>15.6</td>
<td>269</td>
<td>-97</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-487</td>
<td>39.5</td>
<td>684</td>
<td>-197</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-297</td>
<td>84.2</td>
<td>1458</td>
<td>-36</td>
<td>216</td>
</tr>
</tbody>
</table>
とくに，Thai Plywood 社が採用している伐採法（C 法）で，6年後も伐採を繰り返すと，多くの養分に不足が早晩生じる懸念がある。しかし，もし枝葉や樹皮を林地の残すとすれば，この懸念はかなり薄まることが期待できる。

環境植林地については，慣習的な収穫（B 法）と伐期を変えて収穫したときの雨水供給と持ち出し養分量の差を比較してみた（表 7）。Aa の N と Ca, Am の N でマイナスとなった。ただし，Acacia 類は根粒菌による窒素固定により，N はかなり補給されるものと思われる。伐期別にみると，Acacia では15年伐期でもっともマイナスが大きく，30年になると減少する。鋸土植種では伐期が長くなるほど養分が蓄積していく傾向があるが，ここでの Darbergia や Xylica は通常50年以上の伐期であるので，林地は肥料化することはあっても劣化することはまったく考えられない。

木材収穫が林地養分循環に及ぼす影響は，土壌の性質によって大きく影響され，熱帯地域に多い貧栄養土壌ではマイナスになる例が多い（Judd, 1996, Bouillet et al., 2000）が，ジャワ島の火山灰土壌では，岩石の風化による塩類供給が非常に大きくなり，収支はプラスとなっている（Whitmore, 1998）。

また，一般に熱帯地域では，P は最も欠乏しやすい土壌養分と考えられている。これは土壌中の P の貯留が非常に低レベルであることをよく知られる。しかしながら，木材収穫によって持ち出される P 量もわずかであるために，ここでの養分収支はプラスになったと考える。この結果が他の地域や土壌を問わず適用できるかどうかは今後研究を要する。

このプロジェクトの調査地である風化が進んだ陸液土壌（Acrisol あるいは Oxisol および Ultisol など）では，土壌中に塩基プールが少ない上に，岩石風化は低レベルにあると考えられるので，Thai Plywood 社で行っているような，小径の幹枝まで持ち出す収穫を短年月に繰り返す短伐期産業植林地では，早晩土壌養分が欠乏し始める可能性が大であるといえる。したがって，無機養分の消失が大きい火入れ地中，剥皮丸太の収穫などを実行し，土壌の持続的利用を可能にする処置をとることが望まれる。さらに土壌養分などをモニタリングして，必要であれば適切な施肥を行う。

5. まとめ

熱帯人工林での木材収穫が林地養分循環に与える影響をまとめると，熱帯地方に多い溶脱の進んだ土壌では，表層の可溶態 P, K, Ca などの塩類を1回の伐採で持ち出される塩類量以下しか含んでいないほどに，塩類 pool が小さい。
このような土壌であるが、在来樹種の長伐期林では、森林化によって無機養分が生態系中に年々蓄積されるので、木材収穫のみによって地力の低下がおこるとはないといえる。一方、早生樹の短伐期林では、全木集材を繰り返すと、N、Caなどの養分が早期不足する可能性が高いといえる。より多くの枝葉や樹皮を林地に残すことで、養分低下の程度をかなりやわらげることが可能なことが判明した。したがって、Acrisolのような溶脱の進んだ貧栄養土壌での産業植林地では、より多くの枝葉を林地に残すと共に、剥皮丸太の収穫、火入れ地扱いの中止などの実施と土壌のモニタリングによる不足養分の施肥が推奨される。